
PHYSICAL REVIEW E 68, 056105 ~2003!
Scaling properties of random walks on small-world networks
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Using both numerical simulations and scaling arguments, we study the behavior of a random walker on a
one-dimensional small-world network. For the properties we study, we find that the random walk obeys a
characteristic scaling form. These properties include the average number of distinct sites visited by the random
walker, the mean-square displacement of the walker, and the distribution of first-return times. The scaling form
has three characteristic time regimes. At short times, the walker does not see the small-world shortcuts and
effectively probes an ordinary Euclidean network ind dimensions. At intermediate times, the properties of the
walker shows scaling behavior characteristic of an infinite small-world network. Finally, at long times, the
finite size of the network becomes important, and many of the properties of the walker saturate. We propose
general analytical forms for the scaling properties in all three regimes, and show that these analytical forms are
consistent with our numerical simulations.
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I. INTRODUCTION

The topological properties of real-world networks ha
been studied extensively. But an even more intriguing ta
and a natural extension of these studies, is to understand
the network structure affects dynamics on the networks@1#.
Most people have had the unfortunate experience of catc
the flu ~an example of disease spreading! or picking up a
burning hot plate~an example of neural signal transmission!.
These phenomena are all examples of dynamics on the
cial kind of real-world networks that have been found
display ‘‘small-world’’ properties. Of these phenomena, t
greatest attention thus far has been given to the stud
disease spreading~see, e.g., Refs.@2–5#!. It has even been
suggested that the web of sexual contacts has a small-w
structure@6,7#. Other dynamical models that have been stu
ied on complex networks include the Hodgkin-Huxley mod
@8#, Boolean dynamics@9#, and the generic synchronizatio
of oscillators@10#. Extensive reviews can be found in Ref
@1,2,11#.

In this paper, we will present results for a random walk
a small-world network~SWN, defined below!. Such random
walks may have several applications to real systems.
example, Scalaet al. @12# have argued that the conformatio
space of a lattice polymer has a small-world topology, a
hence, that diffusion and random walks on such small-wo
networks might give insight into relaxation processes such
protein folding.

Much is known about random walks on both regular a
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random networks~see, e.g., Refs.@13,14#!. In addition, there
have been several recent studies of random walks on SW
@12,15–22#. For example, Jasch and Blumen@17# and
Lahtinenet al. @18# have studied the average number of d
tinct sites visited by a walker, and the probability that t
walker is at the origin aftern steps in the limit that the
network sizeL→` and, hence, the number of shortcutsx
→`. In the present work, we present results for the scal
behavior of such quantities as the mean-square displacem
the mean number of distinct sites covered during a rand
walk, the first-return time, and clarify the procedure for o
taining a scaling collapse for random walks on SWN’s.

II. THE RANDOM WALK

In previous work@23,24#, we developed a simple prob
ability function approach for the topological properties
complex networks generated according to the small-wo
model @25,26#. In this approach, we start from a one
dimensional regular network with periodic boundary con
tions andL52N nodes, each node being connected to itsk
nearest neighbors. Hence, the ‘‘degree’’ of each node isk.
Next, we add shortcut ends to each node according to a g
degree distribution (Dq), by following the prescription of
Refs. @27,28#. In the present work we use a modified a
proach@24# by using the following degree distribution in on
dimension~with k51): Dq5(12p)P(q)(p)1p P(q21)(p),
wherePq(l)5exp(2l) lq/q! is the Poisson distribution. We
then select pairs of shortcut ends at random and con
them to each other, thus creating a shortcut. This netwo
generating procedure~with the aboveDq) is equivalent to
that outlined by Newman and Watts@26#. The quantitykp is
the probability that a given site has a shortcut. On avera
there will bex5kpL shortcuts in the network.

nc-
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We carry out the random walk on a lattice~Polya walk! as
follows:

~i! There is only one walker on the small-world netwo
at a time.

~ii ! The random walker is injected onto a randomly ch
sen site on the small-world network, a new site for ea
walker. We will call this site the ‘‘origin’’ of the walk.

~iii ! At each discrete time stept, the walker will jump to a
randomly chosen nearest neighbor of its current sitem with
probability 1/k(m). Here, k(m) is the number of neares
neighbors of sitem, i.e., the degree of nodem.

~iv! The random walker is allowed to wander the netwo
for a time longer than the ‘‘saturation time’’ for the quanti
studied, i.e., the time when that quantity approaches its
iting behavior.

~v! We average over different random walkers and re
izations of the small-world lattice until the results converg

III. SCALING BEHAVIOR

A. General form

In earlier work @23,24#, we demonstrated that the bas
probability distributionP(mun;L,p) ~the probability that two
sites separated byn hops before the introduction of shortcu
has a minimal separation ofm hops when shortcuts are in
cluded! scales withx in the limit of p!1, for all choices of
x. As a consequence, topological quantities derived fr
P(mun;L,p) display a scaling withx5pL in the same limit.

We will first state our main result for the scaling of th
random walk in general, and then consider specific
amples. LetO(p,L,t) be some measurable quantity for th
random walk on a SWN, which saturates to a finite va
Osat as t→`. As specific examples, we will discuss th
mean-square displacement and the average number of
covered by the random walker in timet. We propose that
O(p,L,t) satisfies the scaling law:

O~p,L,t !5Osat F~p2t,pL!. ~1!

We have numerically confirmed this scaling ansatz, as
scribed in the rest of this paper. According to Eq.~1!, a
scaling collapse is observed if one plots the quantity of
terest for various choices of the variables (p,L), holding x
5pL5const, forany choice ofx. This behavior is in con-
trast to previous statements that a scaling collapse canno
expected whenx@100 @18#. Note also that the scaling co
lapse is seen only forfixedvalues ofx5pL and that a pre-
requisite for scaling is thatp!1. Previous workers@17,18#
attempted to show scaling collapse for fixed values ofL ~or
p) while varyingp ~or L), and did not obtain a perfect sca
ing collapse. By contrast, our present results display a per
scaling collapse for fixed values ofx. In the following, we
present our numerical results for two quantities: the m
number of distinct sites covered,Ncov, and the mean squar
displacement̂ r 2&.

B. Average number of distinct visited sites

The average number of distinct nodes visited by a rand
walker, denotedNcov, was first studied by Dvoretzky an
05610
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Erdös @30# for a random walker on an infinited-dimensional
regular lattice. They found thatNcov;At in one-dimensional
~1D!, Ncov;t/ ln t in 2D, andNcov;t for d.2, in the limit of
t→`. How does the small-world network modify this re
sult? Following the arguments of Ref.@17#, we expect that
for short times,t!j2 ~with j51/p), the random walker will
be probing regions of the small-world network@31# that are
essentially without shortcuts~linear regions!. Hence, the be-
havior should be similar to thep50 case where the walke
coversNcov;At sites. For long times,t@Lj, we expect all
the sites in the network to be covered andNcov5L. For
intermediate times,j2!t!Lj, the walker spends on the av
eragej2 time steps per linear region, before anewregion is
accessed—the shortcuts act like a kind of branching proc
for the random walk. As a consequence, in this time regi
there should bet/j2 segments covered andNcov;t @17#.
Combining these regimes, we obtain the scaling form

Ncov5L S~ t/j2;x!, ~2!

where

S~y;x!;H Ay/x, y!1

y/x, 1!y!x

1, y@x,

~3!

andy5t/j2. This is the expected finite-size scaling form f
the average number of distinct visited nodes in the sm
world model in the limitx.1.

In Fig. 1, we show a plot of our calculatedNcov for x
510 ~circles!, 102 ~squares!, and 103 ~stars!. For each value
of x, we have used different values ofp, ranging fromp
50.0002 top50.01, two for eachx value. The scaling col-
lapse is excellent. These results suggest that the scaling p
erties of the small-world network determine the scaling
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FIG. 1. This figure shows the scaling collapse forNcov, the
average number of distinct sites visited by the random walker
x5pL510 ~circles, system sizesL5104 and L5105); x5100
~squares,L5104 and 2.53104); and x51000 ~asterisks,L5105

and L52.53105). The scaling collapse is very good, making
difficult to identify the two curves for eachx value.
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SCALING PROPERTIES OF RANDOM WALKS ON . . . PHYSICAL REVIEW E68, 056105 ~2003!
the random walk; hence, to find a scaling collapse, one m
keep the average number of shortcuts,x, constant. This figure
also shows that, asx increases,Ncov deviates more and mor
from thep50 result.

If, instead, we hold the density of shortcuts constant a
vary the system size, we can explore the finite-size effect
the average number of covered sites,Ncov. In Fig. 2 we plot
the succession of curvesL5103, 104, 105, and 106, all with
p50.01. Upon examination, we find that the slope of t
resulting scaling curve changes from 1/2 to 1. That is,
small t (t!j2), Ncov;At, after which, at largert, there is a
crossover toNcov;t, and finally, at even largert, finite-size
effects become apparent. This behavior observed in the s
lations agrees very well with the arguments preceding
~3!. Note that, whenj&L, we do not see a crossover to th
linear regime in whichNcov;t before finite size effects star
to become dominant.

We now derive an approximate expression forNcov which
is consistent with Eq.~3! and also in good agreement wit
the large-x simulation results. We note that, on average, th
are 2x shortcut ends in the network, defining 2x contiguous
‘‘regions’’ in the 1D network. If a walker takes a shortcut~or
‘‘jump’’ !, it transports the walker from one region to anoth
randomly chosen, region in the network. When the num
of jumps nj is small compared to 2x, there is a high prob-
ability that the regions visited by the walker are ‘‘distinc
~as defined more precisely below!. However, whennj;2x,
there is a high probability that some regions will be visit
more than once. These multiple visits lead to saturation
fects since the already visited sites do not contribute toNcov.

We now derive an expression for the mean number
distinct regions visited by the walker innj jumps. Because
each jump transports the walker from one region to anot
randomly chosen region, the number of distinct regions
obtained by solving the following problem: Ifnj integers
are chosen independently and randomly from the
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FIG. 2. Effects of finite size on the average number of cove
sites,Ncov, which is plotted as a function of timet at fixed density
of shortcutsp50.01 for four different system sizes:L5103, 104,
105, and 106. The saturation seen at all four values ofL is a finite-
size effect.
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$1,2, . . . ,2x%, what is the mean number ofdistinct integers
chosen? This latter problem is easily solved: The probab
that a given integer isnot chosen in a given trial isq51
21/2x; hence, the probability that a given integer is n
chosen innj trials isqnj'e2nj /(2x) ~where we have assume
x@1). Thus, the mean number of distinct integers cho
after nj trials is

I cov52x~12e2nj /2x!. ~4!

For the original problem, the above expression gives us
number of distinct regions visited by the walker afternj
jumps, and each distinct region visited by the walker cor
sponds to coveringL/(2x) sites. Furthermore, after timet,
the random walker has, on average, takennj5 b4p2t c jumps.
Hence, the probability that the walker visits a new regi
after thenj th jump is exp(2b2yc/x). Also, the time spent by
the walker in this new region ist85t2(1/4p2) b4p2t c, while
the number of sites covered in this time interval is given
At8, i.e., proportional to the expression for thep50 case.
Combining these estimates, we find that the mean numbe
sites visited after timet is given by

S~y,x!'12e2(2/x) byc1
2

x
Ay2 byce2(2/x) byc. ~5!

Expression~5! is clearly only an approximation to th
exact functionS(y,x). However, it does captures the ke
processes leading to the growth and saturation ofNcov and
hence is a useful approximation. In Fig. 3, we compare t
function to the numerically obtained curves forS(y,x) at p
50.01, takingL5105 and L→`. The agreement is quite
good and shows that Eq.~5! is a reasonable approximation t
the scaling function.
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FIG. 3. Comparison of the approximation~stars! to Ncov, Eq.
~5!, with numerical data~solid line! for L5105 and p50.01. The
asymptotic (L→`) curve~dotted line! satisfiesNcov}At for small t
(t!j251/p2) andNcov}t for large t (t@j2). The change of slope
between the two behaviors occurs neart;j2.
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C. Mean-square displacement

We now compute the mean-square displacement^r 2(t)&
of the random walker as a function of timet. To calculate this
quantity, we first, at each time step, find theminimaldistance
from the current position of the random walker to the orig
~i.e., the smallest number of steps needed for the rand
walker to reach the origin! using a breadth-first searc
method. Then we allow the walker to move through the n
work until ^r 2(t)& has saturated. Finally, we average ov
different initial positions of the walker and realizations of t
network.

Now, we know that for a random walk on an infinit
hypercubic,d-dimensional latticê r 2(t)&5(1/2)Dt, as can
be shown using, e.g., a generating function formali
@13,29#. However, on afinite lattice,^r 2(t)& must approach a
constant for larget. In this limit, each node of the networ
has equal probability of being occupied by the rand
walker. This insight immediately gives^r 2&5 ,̄2, where,̄2 is
the squared minimum distance between a pair of nodes,
eraged over all possible pairs and network realizations.

On a SWN, the other relevant length scale for the rand
walker isj51/p, theaveragedistance the walker travels t
reach a shortcut. These two lengths suggest the follow
scaling ansatz:̂ r 2&5 ,̄2R(t/j2;pL). We can also infer the
behavior of R(y,x) using simple arguments. For timest
!j2, the walker is exploring regions of the network witho
shortcuts, and we expect diffusive behavior similar to tha

a regular network, givingR(y,x);y/ ,̄2. When t;A,̄2/p,
we expect the mean-square displacement to saturate,
R(y,x)51. The transition between the two types of behav
is not sharp, since the walker may reach a shortcut befo
has travelled a distancej.

We have numerically confirmed this scaling collapse fo
wide range ofx values. In Fig. 4, we plotR(t/j2;x) for a
sequence of networks withx5pL510, 103, and 105. For
each constant-x curve, we use two distinct values ofp
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FIG. 4. Mean-square displacement^r 2(t)& for a random walker
on a SWN for several values ofp<0.01 and the three choices fo
average numbers of shortcuts:x5pL510, 103, and 105. Note that
each constant-x curve consists of two distinct (p,L) combinations.
^r 2(t)& saturates at larget because of finite-size effects.
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<0.01. We see that initially, the walker probes a regu
network, andR(t/j2;x) is linear in t. When t/j2;1, the
walker begins to reach some shortcuts in the network,
there is a crossover to superdiffusive behavior. Finally,
still larger t/j2, finite-size effects become important an
R(t/j2;x) saturates.

To further explore finite-size effects on the mean-squ
displacement, we have studied^r 2(t)& in a succession of
networks, each with the same density of shortcuts,p
50.01, but with different linear sizeL. In Fig. 5, we plot the
calculated̂ r 2(t)& for values ofL differing by factors of 10
and ranging from 103 to 107. The resulting curves are a
very similar to theL→` curve, until finite-size effects pro
duce saturation witĥr 2&5 ,̄2. Only for the largestx values
are we able to reach the superdiffusive regime, and even
x5105, this regime is so narrow that we cannot determ
with confidence the exponent of the expected power-
time dependence.

The development of an approximate analytical express
for ^r 2(t)& is difficult, since we need the minimal distanc
between two lattice points. However, we know the limitin
forms for^r 2(t)&. Further, by making the approximation th
the random walker only uses a shortcut once, we can ex
the arguments used to derive the approximate expression
Ncov, Eq. ~5!. Hence, we can write down the following an
satz for^r 2(t)&:

R~y,x!512e2(1/p2,̄2) byc2S 12
1

p2,̄2
~y2 byc !D . ~6!

In Fig. 6, we compare this ansatz with the simulations
L5107; evidently it agrees reasonably well with the nume
cal results.

We can write down the scaling function in several limitin
regimes, without necessarily using the above ansatz for
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FIG. 5. Mean-square displacement^r 2(t)& as a function of time
t for a random walker on a succession of networks, all with
same density of shortcuts (p50.01), and system sizes varying from
L5103 to L5107. Except for very larget, all curves collapse onto
a single scaling curve, the curve which would be obtained foL
→`, but at sufficiently larget, finite-size effects become importan
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specific functional form. For example, we must have

R~y;x!;y/~p2,̄2!, y!1, ~7!

and

R~y;x!51, y@pA,̄2. ~8!

However, the known limiting behaviors cannot give the sc
ing function in the intermediate regime. We therefore use
above ansatz to propose

R~y;x!;y2/~p2,̄2!, 1!y!pA,̄2. ~9!

We are not able to verify this last behavior numerically fro
our present results.

D. First-return time distribution

Next, we turn to another property of a walker on a SW
namely, the distribution of first-passage~or first return!
times. This is the probability that a walker will return to
given sitem for thefirst timeat timet after leaving that site.
We denote this distribution asf (m,t;L,p). Note that this
distribution does not saturate to a finite value whent→`,
and hence, it shows that the scaling collapse of random w
properties is not only limited to those which saturate to
finite value. In order to find a smooth distribution, we mu
make a slight change to the random walker rules: For e
time step, the walker is now allowed to stay on the curr
node with probability 1/@k(m)11#.

An extensive review of first passage processes has b
given by Redner@32#. Unlike the other quantities presente
in this paper, the first-return time does not saturate to a fi
value, instead it approaches zero. However, the scaling
lapse is still present. This collapse is demonstrated in Fig
where we plotf (0,t) for two different (p,L) combinations,
holding x constant.
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FIG. 6. Comparison of the approximation~stars! to ^r 2(t)&, Eq.
~6!, with numerical data~solid line! for L5107 and p50.01. The
asymptotic (L→`) curve~dotted line! satisfieŝ r 2(t)&}t for small
t (t!j2) and ^r 2(t)&}t2 for large t (t@j2).
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The ‘‘small-world’’ effect on the first-return time distribu
tion is most clearly seen at large values ofx. In Fig. 8, we
plot f (0,t) for a network ofL5106 sites and a shortcut den
sity of p50.01. For short waiting times, as expected,f (0,t)
behaves like that of ap50 network~no shortcuts!. However,
for intermediate waiting times such that,̄2!t!Lj, we find
that f (0,t) is independentof t. This independence indicate
that the position of the random walker is completely rando
ized: the memory of the walker’s starting position is n
longer retained in the system and the walker is equally lik
to occupy any site in the network. This occurs whent; ,̄2,
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FIG. 7. Scaling collapse of the first-return time distributio

f (0,t), plotted against the dimensionless timeu5t/ ,̄2(L,p) for
networks with the average number of shortcutsx5pL5100 using
L5104 andL52.53104 nodes.
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FIG. 8. First-return time distribution,f (0,t), plotted against the

dimensionless timeu5t/ ,̄2(L,p). For waiting timest! ,̄2(L,p),
the first-return time distributionf (0,t) behaves like that of ap50
network, with f (0,t);t23/2. For intermediate waiting times

@ ,̄2(L,p)!t!Lj#, f (0,t) is independent oft, since each node is
occupied with equal probability. Fort.Lj, lattice finite-size effects

dominate. The inset shows (t/ ,̄2)3/2f (0,t/ ,̄2).
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as discussed above for^r 2(t)&. Also, Lj is the characteristic
time for the asymptotic decay off (m,t;L,p), since it is the
saturation time scale forNcov. Note that the separation o
,̄2(L,p) andLj increases with increasing number of sho
cuts x in the system, making the ‘‘knee’’ of the first-retur
distribution more pronounced.

For a random walk on a finite interval@0,L# with an ab-
sorbing wall at zero and a reflecting wall atL there is a
similar effect in the first return time@32,33#; at t;L2 there is
an enhancement of the first-return probability. In our ca
the origin of this effect is the splitting of the time scales,̄2

andLj, while for the walk on the finite interval the cause f
this effect are the contributions from reflected trajectories

IV. SUMMARY

In summary, we have studied the behavior of a rand
walker on a small-world network, using a combination
numerical methods and scaling assumptions. We conjec
that the scaling law of Eq.~1! is obeyed by measurable
saturating propertiesO(p,L,t) of a random walk on a SWN
Among these properties are the average number of dis
.

.A

s

nts

05610
,

f
re

ct

visited sites,Ncov, and the mean-square displacement^r 2&
for random walks on SWN’s, both of which we have studi
over a wide range of node numbersL and shortcut densities
p. In both cases, we find that Eq.~1! is satisfied, and the
quantities depend only on the single variablex5pL. Addi-
tionally, we find that nonsaturating properties also show
scaling collapse, as exemplified by the first-return time.

Thus, we have shown that the dynamical behavior o
random walker on a SWN has the same scaling behavio
that exhibited by purely geometrical properties of the n
work ~as described in, e.g., Ref.@23#!. This scaling behavior
should be useful in interpreting a variety of other propert
on SWN’s, and may be of value in studying real-world ph
nomena for which a SWN is a good model.
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